UG Network Monitoring and Control System

By Derrick Harris
Portland General Electric Co.
Introduction

• Derrick Harris
• Distribution Engineer (EIT) at Portland General Electric Co.
• 4 ½ years experience
• Project Manager of Distribution Monitoring and Control System for Core/Downtown area at PGE
Network Monitoring and Control

• Canyon Network #1 – 31 units, 15 MVA
 – Monitoring system installed

• Canyon Network #2 – 43 units, 15 MVA
 – Monitoring system to be installed 2006

• Canyon Network #3 – 68 units, 30 MVA
 – Monitoring system to be installed 2007

• Stephens Network – 76 units, 25 MVA
 – Monitoring system to be installed 2008
Network Monitoring and Control

• System Objective

 – To provide a Distribution Monitoring and Control System on the Low Voltage Secondary Network System which provides service to the Downtown Core Area.
Network Monitoring and Control
Network Monitoring and Control

• NWP Relay is a device used to control the Network Protector operation under various conditions
• Monitoring attributes includes the following:
 – Protector Status
 – Transformer Voltages
 – Network Voltages
 – Phase Currents
 – Power
 – Reactance
 – Temperature
 – Power factor
 – Three auxiliary positions
Network Monitoring and Control

• Master Incom Network Translator
 – Translates Incom (relay) protocol to ASCII encoded hex messages
Network Monitoring and Control

• H&L Fiber Transceivers
 – Used to transmit data over long distances via RS-232 ports and fiber optic cable
Network Monitoring and Control
Network Monitoring and Control

• Powernet PC
 – Polls data from relays via media previously discussed.
Current & Energy

<table>
<thead>
<tr>
<th>Device</th>
<th>Status</th>
<th>Reason</th>
<th>I(A)</th>
<th>I(B)</th>
<th>I(C)</th>
<th>I(G)</th>
<th>I(N)</th>
<th>Watts</th>
<th>Vars</th>
<th>kWh</th>
<th>PF</th>
<th>PK Dmd</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHUG: D17-V0202C13117</td>
<td>Closed</td>
<td>Normal</td>
<td>452.1</td>
<td>466.8</td>
<td>500.1</td>
<td></td>
<td></td>
<td>348,300</td>
<td>197,370</td>
<td>0.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHUG: D18-V0196C13114</td>
<td>Closed</td>
<td>Normal</td>
<td>269.1</td>
<td>283.5</td>
<td>289.3</td>
<td></td>
<td></td>
<td>187,130</td>
<td>150,940</td>
<td>0.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHUG: D19-V0196C13115</td>
<td>Closed</td>
<td>Normal</td>
<td>367.9</td>
<td>386.5</td>
<td>384.2</td>
<td></td>
<td></td>
<td>262,840</td>
<td>185,060</td>
<td>0.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHUG: D21-V0196C13116</td>
<td>Closed</td>
<td>Normal</td>
<td>397.7</td>
<td>425.8</td>
<td>424.6</td>
<td></td>
<td></td>
<td>333,800</td>
<td>106,710</td>
<td>0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHUG: D22-V0195C13114</td>
<td>Closed</td>
<td>Normal</td>
<td>357.4</td>
<td>376.9</td>
<td>399.0</td>
<td></td>
<td></td>
<td>261,810</td>
<td>160,590</td>
<td>0.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHUG: D23-V0195C13115</td>
<td>Closed</td>
<td>Normal</td>
<td>481.8</td>
<td>499.5</td>
<td>518.3</td>
<td></td>
<td></td>
<td>361,800</td>
<td>184,260</td>
<td>0.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHUG: D24-V0195C13116</td>
<td>Closed</td>
<td>Normal</td>
<td>507.1</td>
<td>535.3</td>
<td>574.3</td>
<td></td>
<td></td>
<td>426,200</td>
<td>114,930</td>
<td>0.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHUG: D25-V0195C13117</td>
<td>Closed</td>
<td>Normal</td>
<td>439.3</td>
<td>446.6</td>
<td>464.6</td>
<td></td>
<td></td>
<td>332,300</td>
<td>131,920</td>
<td>0.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHUG: D26-V0214C13114</td>
<td>Closed</td>
<td>Normal</td>
<td>446.0</td>
<td>456.6</td>
<td>455.6</td>
<td></td>
<td></td>
<td>282,740</td>
<td>255,680</td>
<td>0.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHUG: D27-V0214C13115</td>
<td>Closed</td>
<td>Normal</td>
<td>526.3</td>
<td>538.2</td>
<td>501.7</td>
<td></td>
<td></td>
<td>361,500</td>
<td>248,610</td>
<td>0.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHUG: D28-V0214C13116</td>
<td>Closed</td>
<td>Normal</td>
<td>611.5</td>
<td>605.1</td>
<td>603.8</td>
<td></td>
<td></td>
<td>464,800</td>
<td>212,340</td>
<td>0.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHUG: D29-V0219C13114</td>
<td>Closed</td>
<td>Normal</td>
<td>859.5</td>
<td>848.5</td>
<td>826.0</td>
<td></td>
<td></td>
<td>263,560</td>
<td>142,470</td>
<td>0.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHUG: D30-V0349C13115</td>
<td>Closed</td>
<td>Normal</td>
<td>950.5</td>
<td>992.9</td>
<td>973.5</td>
<td></td>
<td></td>
<td>317,930</td>
<td>165,370</td>
<td>0.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHUG: D31-V0349C13117</td>
<td>Closed</td>
<td>Normal</td>
<td>923.5</td>
<td>930.0</td>
<td>913.0</td>
<td></td>
<td></td>
<td>311,960</td>
<td>129,530</td>
<td>0.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHUG: D32-V0180C13115</td>
<td>Closed</td>
<td>Normal</td>
<td>590.1</td>
<td>581.7</td>
<td>563.1</td>
<td></td>
<td></td>
<td>431,600</td>
<td>215,390</td>
<td>0.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHUG: D31-V0180C13114</td>
<td>Closed</td>
<td>Normal</td>
<td>383.3</td>
<td>390.0</td>
<td>386.7</td>
<td></td>
<td></td>
<td>275,690</td>
<td>163,430</td>
<td>0.86</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Network Monitoring and Control

• Clients/Users
 – Uses HMI software to model system/alarms
 – 5 clients using HMI software over secure network
Network Monitoring and Control

• PI node added
 – PI is a program used to monitor and trend substation data via SCADA and MV-90
• Gives read-only rights of network system to engineers throughout PGE
• Allows trending of selected relay attributes
Network Monitoring and Control

- SYSTEM BENEFITS
 - Economical
 - Extends Routine Maintenance Period
 - Protector Cycling can now be monitored
 - Eliminates Extra Trips During Outages
 - Protector Closed status is now visible
 - Reduction of Rebuilds
 - Problems will be caught before they occur
Network Monitoring and Control

• SYSTEM BENEFITS
 – Economical cont.
 • Reduces Field time gathering load/current info
 – Relay settings can be viewed
 • Reduces time in troubleshooting
 – Now able to see which protectors hang up during feeder outages
 – Now able to better determine existing problems with network protectors based on given data (phase currents, voltages, etc.)
Network Monitoring and Control

• System Benefits
 – Better System Design
 • With real-time data, system can be modeled more accurately, and apparent problems can be fixed
 • More accurate study in system loading will keep system from being overbuilt
Network Monitoring and Control

• System Benefits
 – Safety
 • Remote control can de-energize spot network collector busses
 • Back-feeding network protectors can be easily detected
 • Potential hazards can be detected
Questions?